4.6 Article

Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef

Journal

PLOS ONE
Volume 13, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0193932

Keywords

-

Funding

  1. Global Change Institute Seed Grant
  2. Australian Research Council DECRA Fellowships [DE120102614, DE120102459, DE130101084]
  3. World Wildlife Fund Kathryn S. Fuller Science for Nature Fund
  4. US National Science Foundation International Postdoctoral Fellowship
  5. Marine and Coastal Carbon Biogeochemistry Cluster
  6. Australian Research Council [DE120102614] Funding Source: Australian Research Council

Ask authors/readers for more resources

Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C: N) and mean sediment particle size (mu m) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available