4.6 Article

Prediction of daily PM2.5 concentration in China using partial differential equations

Journal

PLOS ONE
Volume 13, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0197666

Keywords

-

Funding

  1. Major Research Plan of the National Natural Science Foundation of China [91430108]
  2. National Basic Research Program [2012CB955804]
  3. National Natural Science Foundation of China [11171251, 11771322, 11571324]
  4. National Science Foundation [DMS-1737861]
  5. Major Program of Tianjin University of Finance and Economics [ZD1302]
  6. Science Research Project of Tianjin Education Commission [20175K108]

Ask authors/readers for more resources

Accurate reporting and forecasting of PM2.5 concentration are important for improving public health. In this paper, we propose a partial differential equation (PDE) model, specially, a linear diffusive equation, to describe the spatial-temporal characteristics of PM2.5 in order to make short-term prediction. We analyze the temporal and spatial patterns of a real dataset from China's National Environmental Monitoring and validate the PDE-based model in terms of predicting the PM2.5 concentration of the next day by the former days' history data. Our experiment results show that the PDE model is able to characterize and predict the process of PM2.5 transport. For example, for 300 continuous days of 2016, the average prediction accuracy of the PDE model over all city-regions is 93% or 83% based on different accuracy definitions. To our knowledge, this is the first attempt to use PDE-based model to study PM2.5 prediction in both temporal and spatial dimensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available