4.7 Article

LeSPL-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato

Journal

PLANTA
Volume 248, Issue 4, Pages 893-907

Publisher

SPRINGER
DOI: 10.1007/s00425-018-2949-z

Keywords

Cadmium toxicity; Iron uptake; Solanum lycopersicum; Transcription factor

Categories

Funding

  1. Natural Science Foundation of China [31222049]
  2. Chang Jiang Scholars Program

Ask authors/readers for more resources

Main conclusion An SPL-type transcription factor, LeSPL-CNR, is negatively involved in NO production by moduLating SlNR expression and nitrate reductase activity, which contributes to Cd tolerance. Cadmium (Cd) is a highly toxic pollutant. Identifying factors affecting Cd accumulation in plants is a prerequisite for minimizing dietary uptake of Cd from crops grown with contaminated soil. Here, we report the involvement of a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor LeSPL-CNR in Cd tolerance in tomato (Solanum lycopersicum). In comparison with the wild-type Ailsa Craig (AC) plants, the Colourless non-ripening (Cnr) epimutant displayed increased Cd accumulation and enhanced sensitivity to Cd, which was in well accordance with the repression of LeSPL-CNR expression. Cd stress-induced NO production was inhibited by nitrate reductase (NR) inhibitor, but not NO synthase-like enzyme inhibitor. Expression of LeSPL-CNR was negatively correlated with SlNR expression and the NR activity. We also demonstrated that LeSPL-CNR inhibited the SlNR promoter activity in vivo and bound to SlNR promoter sequence that does not contain a known SBP-binding motif. In addition, expression of an IRON-REGULATED TRANSPORTER1, SlIRT1, was more abundant in Cnr roots than AC roots under Cd stress. LeSPL-CNR may thus provide a molecular mechanism linking Cd stress response to regulation of NR-dependent NO production, which then contributes to Cd uptake via SlIRT1 expression in tomato.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available