4.8 Article

OsDER1 Is an ER-Associated Protein Degradation Factor That Responds to ER Stress

Journal

PLANT PHYSIOLOGY
Volume 178, Issue 1, Pages 402-412

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.18.00375

Keywords

-

Categories

Funding

  1. Ministry of Science and Technology of China [2016YFD0100500]
  2. National Natural Science Foundation of China [31770271, 31171368, 31300212]

Ask authors/readers for more resources

Endoplasmic reticulum-associated protein degradation (ERAD) plays an important role in endoplasmic reticulum (ER) quality control. To date, little is known about the retrotranslocation machinery in the plant ERAD pathway. We obtained a DERLIN-like protein (OsDER1) through a SWATH-based quantitative proteomic analysis of ER membrane proteins extracted from ER-stressed rice (Oryza sativa) seeds. OsDER1, a homolog of yeast and mammal DER1, is localized in the ER and accumulates significantly under ER stress. Overexpression or suppression of OsDER1 in rice leads to activation of the unfolded protein response and hypersensitivity to ER stress, and suppression results in floury, shrunken seeds. In addition, the expression levels of polyubiquitinated proteins increased markedly in OsDER1 overexpression or suppression transgenic rice. Coimmunoprecipitation experiments demonstrated that OsDER1 interacted with OsHRD1, OsHRD3, and OsCDC48, the essential components of the canonical ERAD pathway. Furthermore, OsDER1 associated with the signal peptide peptidase, a homolog of a component of the alternative ERAD pathway identified recently in yeast and mammals. Our data suggest that OsDER1 is linked to the ERAD pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available