4.7 Article

The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in Arabidopsis

Journal

PLANT AND CELL PHYSIOLOGY
Volume 59, Issue 9, Pages 1739-1752

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcy145

Keywords

Arabidopsis; Iron deficiency response; Short peptide; Systemic response

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) [24370023]
  2. Japan Society for the Promotion of Science (JSPS) [16H06296]
  3. Sumitomo Foundation [161054]

Ask authors/readers for more resources

Iron is an essential element for all organisms, and plants have developed sophisticated systems to acquire iron and maintain iron homeostasis. We found that an Arabidopsis thaliana ABA-hypersensitive mutant, aba hypersensitive germination2-1 (ahg2-1), that is known to be defective in mitochondrial mRNA regulation, had increased expression of iron deficiency response genes. The ahg2-1 mutant had lower heme levels than the wild type. Transcriptome data further revealed that novel genes encoding short polypeptides were highly expressed in this mutant. The expression of one of these genes, which we named FE-UPTAKE-INDUCING PEPTIDE 1 (FEP1), was induced under iron-deficient conditions and was observed in the vascular tissues of the leaves and roots, as well as in leaf mesophyll cells. Notably, deletion or insertion mutations of FEN exhibited impaired iron accumulation in shoots but normal iron levels in roots. Artificially induced expression of FEP1 was sufficient to induce iron deficiency response genes, such as basic HELIX- LOOP-HELIX 38 (bHLH38), bHLH39, IRON-REGULATED TRANSPORTERI (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2), and led to iron accumulation in planta. Further analysis confirmed that the encoded peptide, but not the FEP1 RNA, was responsible for this activity. Remarkably, the activation of bHLH39 by FEP1 was independent of FER-LIKE IRON DEFICIENCY INDUCED (FIT), a key transcription factor in the iron deficiency response. Taken together, our results indicate that FEP1 functions in iron homeostasis through a previously undescribed regulatory mechanism for iron acquisition in Arabidopsis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available