4.3 Article

Swirl mission concept: Unraveling the enigma

Journal

PLANETARY AND SPACE SCIENCE
Volume 162, Issue -, Pages 73-88

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2018.05.017

Keywords

Lunar swirls; Reiner Gamma Swirl; Magnetic anomalies; Mission concept

Funding

  1. Arizona State University

Ask authors/readers for more resources

During the Apollo era of lunar exploration, mysterious albedo patterns, called swirls, captured the imagination of the scientific community. A key aspect of this interest was due to the discovery that the swirls are associated with localized relatively strong remnant magnetic fields. Analysis of returned soil samples revealed that solar wind, galactic cosmic rays, and micrometeorite impacts change the albedo of surface soil grains, a process known as space weathering that reduces regolith reflectance over time. Thus it was natural to invoke local magnetic structures as shields that retard space weathering resulting in relatively less space weathering of the regolith in regions with the strongest localized magnetic fields. However, the origins of the magnetic anomalies and associated swirls remain enigmatic to this day. We designed the Swirl CubeSat to determine the nature of remnant lunar magnetic fields and investigate their role in moderating space weathering of the regolith and assess their suitability for radiation protection of surface assets. Swirl has one focused observational objective: characterize the magnetic field associated with the Reiner Gamma Swirl (RGS) at sub-kilometer spatial sampling, with 0.5 nTesla accuracy and 100 m spatial precision. In the Swirl mission concept, the Swirl spacecraft, a 6U CubeSat, would deploy as a secondary payload from a vehicle on a deep space trajectory. A series of maneuvers would then place the spacecraft in a low orbit that would then be modified to have a periapse of 5-10 km for thirty orbits passing over RGS. Prime Swirl observations were designed during these low-altitude passes and consist of high-resolution vector magnetic field measurements and monochrome navigation imaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available