4.7 Article

Identifying potential quality markers of Xin-Su-Ning capsules acting on arrhythmia by integrating UHPLC-LTQ-Orbitrap, ADME prediction and network target analysis

Journal

PHYTOMEDICINE
Volume 44, Issue -, Pages 117-128

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2018.01.019

Keywords

Quality marker; Traditional Chinese medicine; UHPLC-LTQ-Orbitrap; Absorption-distribution-metabolism-excretion; Network target

Funding

  1. 973 Program of China [2015CB554406]
  2. National Key Technology R&D Program of China [2011BAI07B08]
  3. National Natural Science Foundation of China [81473414, 81673834]

Ask authors/readers for more resources

Background: Quality marker (Q-markers) has been proposed as a novel concept for quality evaluation and standard elaboration of traditional Chinese medicine (TCM). Xin-Su-Ning capsule (XSNC) has been extensively used for the treatment of arrhythmia with the satisfactory therapeutic effects in clinics. However, it is lack of reliable and effective Q-markers of this prescription. Purpose: To identify potential Q-markers of XSNC against arrhythmia. Study Design: An integrative pharmacology-based investigation was performed. Methods: Ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap) was performed to identify the preliminary chemical profile of XSNC in a rapid and high-throughput manner. Then, in silico Absorption-Distribution-Metabolism-Excretion (ADME) models were utilized to screen candidate active chemical compounds characterized by drug-likeness features. In addition, drug target-disease gene interaction network was constructed, and network features were calculated to identify key candidate targets and the potential Q-markers of XSNC against arrhythmia. Results: A total of 41 chemical compounds with good drug-likeness and more chances to be absorbed into body were identified as the candidate bioactive chemical compounds which might offer contributions to the therapeutic effects of XSNC against arrhythmia in vivo. Following the prediction of 921 XSNC putative targets and the construction of XSNC putative target-known therapeutic target of arrhythmia interaction network, 315 hub nodes with high connectivity were selected. Functionally, the hub nodes were involved into modulation of cardiac sympatho-vagal balance, regulation of energy production and metabolism, as well as angiogenesis and vascular circulation during the development and progression of arrhythmia. Moreover, 63 major hubs with network topological importance were chosen as XSNC candidate targets against arrhythmia. Furthermore, berberine, palmatine, scopoletin, liquiritigenin, naringenin, formononetin, nobiletin, tangeretin, 5-demethylnobiletin, kushenol E and kurarinone hitting the corresponding XSNC candidate targets were screened out to be the potential Q-markers of XSNC against arrhythmia. Conclusion: Our integrative pharmacology-based approach combining UHPLC-LTQ-Orbitrap, in silico ADME prediction and network target analysis may be efficient to identify potential Q-markers of TCM prescriptions. Our data showed that berberine, palmatine, scopoletin, liquiritigenin, naringenin, formononetin, nobiletin, tangeretin, 5-demethylnobiletin, kushenol E and kurarinone might function as candidate markers for qualitative evaluation of XSNC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available