4.5 Article

Impact of high intensity interval exercise on executive function and brain derived neurotrophic factor in healthy college aged males

Journal

PHYSIOLOGY & BEHAVIOR
Volume 191, Issue -, Pages 116-122

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.physbeh.2018.04.018

Keywords

Brain derived neurotrophic factor; Executive function; High intensity interval exercise; Prefrontal cortex; Wisconsin card sorting task

Funding

  1. CTSA from the National Center for Advancing Translational Sciences [UL1TR000058]

Ask authors/readers for more resources

Background: Prefrontal cortex (PFC)-dependent executive function is enhanced immediately following high intensity interval exercise (HIIE). Brain-derived neurotrophic factor (BDNF) is considered a biomarker associated with enhanced execute functioning capacity at rest and in response to exercise. However, the mechanisms responsible for the acute exercise-induced BDNF response in plasma and serum differ, and it is likely that the utilization of BDNF in plasma and/or serum as a biomarker of improved executive function following HIIE may be limited. Therefore, this study examined the impact of HIIE on the plasma and serum BDNF response to understand the efficaciousness of BDNF as a peripheral biomarker associated with improvements in PFC-dependent executive function. Thirteen healthy males (age: 23.62 +/- 1.06 years) participated in a randomized, counterbalanced study, performing the Wisconsin Card Sorting Task (WCST) immediately following a 5-minute seated rest (control) and participation in a HIIE protocol administered two weeks apart. HUE consisted of ten maximal bouts of all out pedaling on a cycle ergometer for 20 s (separated by 10 s of active recovery) against 5.5% of the subject's body weight. Whole blood was collected for the assessment of BDNF in both plasma and serum. Compared to the control session, HIIE elicited significant improvements in WCST performance, yet improvements in PFC-dependent executive function were independent of BDNF concentrations in plasma and serum. Results from this investigation demonstrate that a single session of low-volume, supramaximal HIIE significantly increases PFC-dependent executive function, thereby providing additional evidence to support the powerful benefits on HIIE on cognitive functioning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available