4.6 Article

A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4:Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 23, Pages 15876-15883

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp02317d

Keywords

-

Funding

  1. NSFC (National Natural Science Foundation of China) [11774042, 11704056, 51772159]
  2. Fundamental Research Funds for the Central Universities [3132016333]
  3. China Postdoctoral Science Foundation [2016M591420]
  4. Natural Science Foundation of Zhejiang Province [LZ17E020001]

Ask authors/readers for more resources

It is difficult to calculate the Judd-Ofelt (J-O) parameters for trivalent rare earth (RE)-doped powders due to the unavailable absorption spectrum that is necessarily used in the conventional J-O calculation procedure. In this study, a universal method starting from the diffuse-reflection spectrum for calculating the J-O parameters of RE3+-doped powdered samples was proposed. In this proposed method, by taking the Kubelka-Munk function into account, the absorption cross-section spectrum was derived from the diffuse-reflection spectrum in the RE3+-doped powdered sample using the connection between the absorption cross section and the radiative transition rate of RE3+. Then, the J-O parameters might be calculated from the absorption cross-section spectrum via the traditional J-O calculation technique. The NaYF4:Er3+/Yb3+ and NaYF4:Er3+ phosphors were prepared via an auto-combustion-assisted fluoridation technique, and the J-O calculation was carried out for the obtained samples. The obtained J-O parameters were compared with those reported in the literature and also verified by comparing the calculated radiative transition lifetimes with the experimental values. Finally, it was deduced that the proposed J-O calculation route was practicable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available