4.6 Article

Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO(3) oxides

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 5, Pages 3813-3818

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp06539f

Keywords

-

Funding

  1. Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001060]
  2. U.S. Department of Energy Office of Basic Science
  3. NSF GRFP [DGE-114747]

Ask authors/readers for more resources

The reactivity of solid oxide surfaces towards adsorption of oxygen and hydrogen is a key metric for the design of new catalysts for electrochemical water splitting. In this paper, we report on trends in the adsorption energy of different adsorbed intermediates derived from the oxidation and reduction of water for ternary ABO(3) oxides in the cubic perovskite structure. Our findings support a previously reported trend that rationalizes the observed lower bound in oxygen evolution (OER) overpotentials from correlations in OH* and OOH* adsorption energies. In addition, we report hydrogen adsorption energies that may be used to estimate hydrogen evolution (HER) overpotentials along with potential metrics for electrochemical metastability in reducing environments. We also report and discuss trends between atom-projected density of states and adsorption energies, which may enable a design criteria from the local electronic structure of the active site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available