4.6 Article

Water facilitates oxygen migration on gold surfaces

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 4, Pages 2196-2204

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp06451a

Keywords

-

Funding

  1. Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center (EFRC) - US Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0012573]

Ask authors/readers for more resources

The water-oxygen-gold interface is important in many surface processes and has potential influence on heterogeneous catalysis. Herein, it is shown that water facilitates the migration of atomic oxygen on Au(110), demonstrating the dynamic nature of surface adsorption. We demonstrate this effect for the first time, using in situ scanning tunnelling microscopy (STM), temperature-programmed reaction spectroscopy (TPRS) and first-principles theoretical calculations. The dynamic interaction of water with adsorbed O maintains a high dispersion of O on the surface, potentially creating reactive transient species. At low temperature and pressure, isotopic experiments show that adsorbed oxygen on the Au(110) surface exchanges with oxygen in (H2O)-O-18. The presence of water modulates local electronic properties and facilitates oxygen exchange. Combining experimental results and theory, we propose that hydroxyl is transiently formed via proton transfer from the water to adsorbed oxygen. Hydroxyl groups easily recombine to regenerate water and adsorbed oxygen atoms, the net result of which is migration of the adsorbed oxygen without significant change in its overall distribution on the surface. The presence of water creates a dynamic surface where mobile surface oxygen atoms and hydroxyls are present, which can lead to a better performance of gold catalysis in oxidation reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available