4.6 Article

Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 11, Pages 7772-7780

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp08557e

Keywords

-

Funding

  1. National Natural Science Foundation of China [51706016, 51436001, 51422601]

Ask authors/readers for more resources

Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available