4.6 Article

Fe-Si networks and charge/discharge-induced phase transitions in Li2FeSiO4 cathode materials

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 21, Pages 14557-14563

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp01962b

Keywords

-

Funding

  1. National Natural Science Foundation of China [11574284, 11774324]
  2. National Basic Research Program of China (973 Program) [2012CB215405]
  3. Collaborative Innovation Center of Suzhou Nano Science and Technology
  4. USTC
  5. China Scholarship Council [201506340115]
  6. US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358]
  7. National Key Research Program of China [2016YFA0202601]
  8. 111 Project [B13027]
  9. USTC Qian-Ren B (1000-Talents Program B) fund

Ask authors/readers for more resources

Structural phase transitions of electrode materials are responsible for poor reversibility during charge/discharge cycling in Li-ion batteries. Using previously developed structural databases, we investigate a structural landscape for LixFeSiO4 systems at x = 1. Starting with low-energy Li2FeSiO4 crystal structures, we explore the crystal structures of the material in different states of charge. The as-prepared Li2FeSiO4 materials adopt low energy structures characterized by two-dimensional (2D) Fe-Si networks. After the removal of one Li per formula unit to form LiFeSiO4, the structures with three-dimensional (3D) diamond-like Fe-Si networks become more energetically favorable without a significant impact on the charge capacity, which agrees with previous experimental and theoretical work. However, we reveal that the structure with a 3D diamond-like Fe-Si network can further transform into a new structure at x = 1. And the Li atom is hard to reinsert into these new structures. Consequently the system is prevented from returning to the Li2FeSiO4 state. We believe that the formation of this new structure plays an important role in the loss of reversible capacity of Li2FeSiO4 electrode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available