4.5 Article

DFT calculations of graphene monolayer in presence of Fe dopant and vacancy

Journal

PHYSICA B-CONDENSED MATTER
Volume 541, Issue -, Pages 6-13

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physb.2018.04.023

Keywords

Graphene; Doped graphene; Density functional theory; Vacancy

Ask authors/readers for more resources

In the present work, the effects of Fe doping and vacancies on the electronic, magnetic and optical properties of graphene are studied by density functional theory based calculations. The conductive behavior is revealed for the various defected graphene by means of electronic density of states. However, defected structures show different magnetic and optical properties compared to those of pure one. The ferromagnetic phase is the most probable phase by substituting Fe atoms and vacancies at AA sublattice of graphene. The optical properties of impure graphene differ from pure graphene under illumination with parallel polarization of electric field, whereas for perpendicular polarization it remains unchanged. In presence of defect and under parallel polarization of light, the static dielectric constant rises strongly and the maximum peak of Im epsilon(omega) shows red shift relative to pure graphene. Moreover, the maximum absorption peak gets broaden in the visible to infrared region at the same condition and the magnitude and related energy of peaks shift to higher value in the EELS spectra. Furthermore, the results show that the maximum values of refractive index and reflectivity spectra increase rapidly and represent the red and blue shifts; respectively. Generally; substituting the C atom with Fe has more effect on magnetic and optical properties relative to the C vacancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available