4.6 Article

Identifying influential spreaders in complex networks based on kshell hybrid method

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physa.2018.02.016

Keywords

Complex network; Most influential spreaders; Spreading ability; Kshell hybrid method; SIR epidemic model

Funding

  1. Visvesvaraya PhD scheme
  2. MeitY, Govt. of India

Ask authors/readers for more resources

Influential spreaders are the key players in maximizing or controlling the spreading in a complex network. Identifying the influential spreaders using kshell decomposition method has become very popular in the recent time. In the literature, the core nodes i.e. with the largest kshell index of a network are considered as the most influential spreaders. We have studied the kshell method and spreading dynamics of nodes using Susceptible-Infected-Recovered (SIR) epidemic model to understand the behavior of influential spreaders in terms of its topological location in the network. From the study, we have found that every node in the core area is not the most influential spreader. Even a strategically placed lower shell node can also be a most influential spreader. Moreover, the core area can also be situated at the periphery of the network. The existing indexing methods are only designed to identify the most influential spreaders from core nodes and not from lower shells. In this work, we propose a kshell hybrid method to identify highly influential spreaders not only from the core but also from lower shells. The proposed method comprises the parameters such as kshell power, node's degree, contact distance, and many levels of neighbors' influence potential. The proposed method is evaluated using nine real world network datasets. In terms of the spreading dynamics, the experimental results show the superiority of the proposed method over the other existing indexing methods such as the kshell method, the neighborhood coreness centrality, the mixed degree decomposition, etc. Furthermore, the proposed method can also be applied to large-scale networks by considering the three levels of neighbors' influence potential. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available