4.5 Article

Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2017.0206

Keywords

undercooled growth; magnetic field; thermoelectric magnetohydrodynamics; numerical modelling

Funding

  1. International Exchanges Scheme of the Royal Society of the United Kingdom
  2. National Natural Science Foundation of China [51071043, 51211130113]
  3. Fundamental Research Funds for Central Universities [N09050901, N130509001]
  4. EPSRC [EP/K011413/1] Funding Source: UKRI

Ask authors/readers for more resources

In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available