4.7 Article

Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy

Journal

HYPERTENSION
Volume 66, Issue 5, Pages 1006-1013

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.115.06033

Keywords

autophagy; Becn1 protein; mouse; collagen; elastin; myofibroblasts; Scx protein; mouse; vascular stiffness

Funding

  1. National Institutes of Health (NIH) [R01 HL118558, DK093403, HL105302, HL102074, HL116863, AG049780, HL122166]
  2. NIH from COBRE Program of the National Institute of General Medical Sciences [9P20GM104934-06]

Ask authors/readers for more resources

The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available