4.6 Article

Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms

Journal

PAIN
Volume 159, Issue 6, Pages 1025-1034

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/j.pain.0000000000001177

Keywords

Chemotherapy-induced neuropathic pain; Adenosine kinase; Astrocytes

Funding

  1. NIH/National Cancer Institute [NIH RO1 CA169519]
  2. NIDDK Intramural Research Program [Z01 DK031117-26]
  3. NATIONAL CANCER INSTITUTE [R01CA169519] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [Z01DK031117, ZIADK031117] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [T32GM008306] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Development of chemotherapy-induced neuropathic pain (CINP) compromises the use of chemotherapy and greatly impacts thousands of lives. Unfortunately, there are no Food and Drug Administration-approved drugs to prevent or treat CINP. Neuropathological changes within CNS, including neuroinflammation and increased neuronal excitability, are driven by alterations in neuro-glia communication; but, the molecular signaling pathways remain largely unexplored. Adenosine is a potent neuroprotective purine nucleoside released to counteract the consequences of these neuropathological changes. Adenosine signaling at its adenosine receptors (ARs) is dictated by adenosine kinase (ADK) in astrocytes, which provides a cellular sink for the removal of extracellular adenosine. We now demonstrate that chemotherapy (oxaliplatin) in rodents caused ADK overexpression in reactive astrocytes and reduced adenosine signaling at the A(3)AR subtype (A(3)AR) within the spinal cord. Dysregulation of ADK and A(3)AR signaling was associated with increased proinflammatory and neuroexcitatory interleukin-1 beta expression and activation of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, but not putative oxaliplatin-associated GSK3 beta transcriptional regulation. Intrathecal administration of the highly selective A(3)AR agonist MRS5698 attenuated IL-1b production and increased the expression of potent anti-inflammatory and neuroprotective IL-10. The effects of MRS5698 were blocked by attenuating IL-10 signaling in rats with intrathecal neutralizing IL-10 antibody and in IL-10(-/-) knockout mice. These findings provide new molecular insights implicating astrocyte-based ADK- adenosine axis and nucleotide-binding oligomerization domain-like receptor protein 3 in the development of CINP and IL-10 in the mechanism of action of A(3)AR agonists. These findings strengthen the pharmacological rationale for clinical evaluation of A(3)AR agonists already in advanced clinical trials as anticancer agents as an adjunct to chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available