4.6 Article

Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model

Journal

OSTEOARTHRITIS AND CARTILAGE
Volume 26, Issue 9, Pages 1236-1246

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2018.06.002

Keywords

Chronic low back pain; Sterile inflammation; Pain behavior; TAK-242; CGRP; Astrocyte

Funding

  1. Canadian Institutes of Health Research (CIHR) [PJT-148678, MOP-142291]
  2. CIHR [MOP-126046]
  3. Fonds de recherche du Quebec - Sante (FRQS) Doctoral Award
  4. Faculty of Medicine
  5. Le Reseau de recherche en sante buccodentaire et osseuse (RSBO)

Ask authors/readers for more resources

Objective: Intervertebral disc degeneration is a leading cause of chronic low back pain (LBP) but current treatment is limited. Toll-like receptors (TLRs) on disc cells are activated by endogenous extracellular matrix (ECM) fragments and modulate degeneration in vitro. This study investigated whether inhibiting TLR4 slows disc degeneration and reduces behavioral signs of LBP in vivo. Design: 7-9-month old wild-type and secreted protein acidic and rich in cysteine (SPARC)-null (a model of disc degeneration and LBP) male mice were treated with TAK-242 (TLR4 inhibitor) once, and following a 10-day washout, mice were treated 3 times/week for 8 weeks. Behavioral signs of axial discomfort and radiating leg pain were assessed weekly with the grip force assay and acetone test, respectively. Following treatment, pain-related spinal cord changes were evaluated and lumbar discs were excised and cultured. Cytokine secretion from discs was evaluated with protein arrays. Results: SPARC-null mice displayed elevated signs of axial and radiating pain at baseline compared to wild-type. Chronic, but not acute, TLR4 inhibition reduced behavioral signs of pain compared to vehicle. SPARC-null mice have increased calcitonin gene-related peptide (CGRP)-and glial fibrillary acidic protein (GFAP)-immunoreactivity (astrocyte marker) in the dorsal horn compared to wild-type, which is reduced by chronic TLR4 inhibition. Ex vivo degenerating discs from SPARC-null mice secrete increased levels of many pro-inflammatory cytokines, which chronic TLR4 inhibition reduced. Conclusion: Chronic TLR4 inhibition decreased behavioral signs of LBP, pain-related neuroplasticity and disc inflammation in SPARC-null mice. TAK-242 inhibits TLR4 activation within discs, as evidenced by decreases in cytokine release. Therefore, TLRs are potential therapeutic targets to slow disc degeneration and reduce pain. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available