4.8 Article

Kinetic Resolution of β-Hydroxy Carbonyl Compounds via Enantioselective Dehydration Using a Cation-Binding Catalyst: Facile Access to Enantiopure Chiral Aldols

Journal

ORGANIC LETTERS
Volume 20, Issue 7, Pages 2003-2006

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.orglett.8b00547

Keywords

-

Funding

  1. Korean Research Foundation [NRF-2017R1A2A1A05001214, NRF-2016R1A4A1011451]

Ask authors/readers for more resources

A practical and highly enantioselective nonenzymatic kinetic resolution of racemic beta-hydroxy carbonyl (aldol) compounds through enantioselective dehydration process was developed using a cation-binding Song's oligoethylene glycol (oligoEG) catalyst with potassium fluoride (KF) as base. A wide range of racemic aldols was resolved with extremely high selectivity factors (s = up to 2393) under mild reaction conditions. This protocol is easily scalable. It provides an alternative approach for the syntheses of diverse biologically and pharmaceutically relevant chiral aldols in enantiomerically pure form. For example, racemic gingerols could participate in this kinetic resolution with superb efficiency (s > 240), affording both enantiomerically pure gingerols and corresponding shogaols simultaneously in a single step. The dramatic effectiveness of such kinetic resolution process can be ascribed to systematic cooperative hydrogen-bonding catalysis in a densely confined supramolecular chiral cage in situ generated from the chiral catalyst, substrate, and KF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available