4.6 Article

All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber

Journal

OPTICS LETTERS
Volume 43, Issue 7, Pages 1611-1614

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.43.001611

Keywords

-

Categories

Ask authors/readers for more resources

In this Letter, we demonstrate, to the best of our knowledge, the first all-fiber all-normal-dispersion ytterbium-doped oscillator with a nonlinear multimodal interference-based saturable absorber capable of generating ultrashort dissipative soliton pulses. Additional to functioning as a saturable absorber, the use of multimode fiber segments between single-mode fibers also ensures the bandpass filtering via multimode interference reimaging necessary to obtain dissipative soliton mode locking. The oscillator generates dissipative soliton pulses at 1030 nm with 5.8 mW average power, 5 ps duration, and 44.25 MHz repetition rate. Pulses are dechirped to 276 fs via an external grating compressor. All-fiber cavity design ensures high stability, and similar to 70 dB sideband suppression is measured in the radio frequency spectrum. Numerical simulations are performed to investigate cavity dynamics, and obtained results are well matched with experimental observations. The proposed cavity presents an alternative approach to achieve all-fiber dissipative soliton mode locking with a simple and low-cost design. (c) 2018 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available