4.6 Article

18 km low-crosstalk OAM plus WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation

Journal

OPTICS LETTERS
Volume 43, Issue 8, Pages 1890-1893

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.43.001890

Keywords

-

Categories

Funding

  1. National Basic Research Program of China [2014CB340004, 2014CB340001]
  2. National Natural Science Foundation of China (NSFC) [11274131, 11574001, 11774116, 61222502, 61761130082]
  3. Royal Society-Newton Advanced Fellowship
  4. National Program for Support of Top-notch Young Professionals
  5. Yangtze River Excellent Young Scholars Program
  6. Program for HUST Academic Frontier Youth Team

Ask authors/readers for more resources

The space domain is regarded as the only known physical dimension of lightwaves left to be exploited for optical communications. Very recently, much research effort has been devoted to using orbital angular momentum (OAM) spatial modes to increase the transmission capacity in fiber-optic communications. However, long-distance low-crosstalk high-order OAM multiplexing transmission in fiber is quite challenging. Here we design and fabricate a graded-index ring-core fiber to effectively suppress radially high-order modes and greatly separate high-order OAM mode groups. By exploiting high-order OAM mode group multiplexing, together with wavelength-division multiplexing (WDM), i.e., 12.5 Gbaud 8-array quadrature amplitude modulation (8-QAM) signals over OAM(+)4 and OAM(+5) modes on 112 WDM channels (224 individual channels), we experimentally demonstrate 8.4 Tbit/s data transmission in an 18 km OAM fiber with low crosstalk. Multiple-input multiple-output digital signal processing is not required in the experiment because of the large high-order mode group separation of the OAM fiber. The demonstrations may open a door to find more fiber-optic communication and interconnect applications exploiting high-order OAM modes. (C) 2018 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available