4.6 Article

Marangoni force-driven manipulation of photothermally-induced microbubbles

Journal

OPTICS EXPRESS
Volume 26, Issue 6, Pages 6653-6662

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.26.006653

Keywords

-

Categories

Funding

  1. Consejo Nacional de Ciencia y Tecnologia (CONACyT) [248214]
  2. PADES [2017-13-011-053]

Ask authors/readers for more resources

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (lambda = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution. Previously, silver nanoparticles were photo deposited on the optical fibers ends. Light absorption at the nanoparticles produces a thermal gradient capable of generating a microbubble at the optical fibers end in non-absorbent liquids. The theoretical and experimental studies carried out showed that by switching the thermal gradients, it is possible to generate forces in opposite directions, causing the migration of microbubbles from one fiber optic tip to another. Marangoni force induced by surface tension gradients in the bubble wall is the driving force behind the manipulation of microbubbles. We estimated a maximum Marangoni force of 400 nN for a microbubble with a radius of 110 mu m. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available