4.6 Article

Fast two-step layer-based method for computer generated hologram using sub-sparse 2D fast Fourier transform

Journal

OPTICS EXPRESS
Volume 26, Issue 13, Pages 17487-17497

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.26.017487

Keywords

-

Categories

Ask authors/readers for more resources

Fast two-step layer-based and sub-sparse two-dimensional Fast Fourier transform (SS-2DFFT ) algorithms arc proposed to speed up the calculation of computer-generated holograms. In a layer-based method, each layer image may contain large areas in which the pixel values are zero considering the occlusion effect among the different depth layers. By taking advantage of this feature, the two-step layer-based algorithm only calculates the nonzero image areas of each layer. In addition, the SS-2DFFT method implements two one-dimensional fast Fourier transforms (1DFFT) to compute a 2DFFT without calculating the rows or columns in which the image pixels are all zero. Since the size of the active calculation is reduced, the computational speed is considerably improved. Numerical simulations and optical experiments are performed to confirm these methods. The results show that the total computational time can be reduced by 5 times for a three-dimensional (3D) object of a train, 3.4 times for a 3D object of a castle and 10 times for a 3D object of a statue head when compared with a conventional layer-based method if combining the two proposed methods together. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available