4.5 Article

Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity

Journal

HUMAN MOLECULAR GENETICS
Volume 24, Issue 9, Pages 2426-2441

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddv005

Keywords

-

Funding

  1. National High-tech Research and Development program of China 973-projects [2011CB504102]
  2. National Natural Sciences Foundation of China [31200803, 31371072]
  3. Natural Science Foundation of Jiangsu Province [BK2012181]
  4. Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases [BM2013003]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC center dot GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC center dot GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity. In the present study, we aimed to understand the biological properties of all five types of RAN proteins. Surprisingly, our results showed that none of these RAN proteins was aggregate-prone in our cellular model and that the turnover of these RAN proteins was not affected by the ubiquitin-proteasome system or autophagy. Moreover, poly-GR and poly-PR, but not poly-GA, poly-GP or poly-PA, localized to the nucleolus and induced the translocation of the key nucleolar component nucleophosmin, leading to nucleolar stress and cell death. This poly-GR- and poly-PR-mediated defect in nucleolar function was associated with the suppression of ribosomal RNAsynthesis and the impairment of stress granule formation. Taken together, the results of the present study suggest a simple model of the molecular mechanisms underlying RAN translation-mediated cytotoxicity in C9orf72-linked ALS/FTD in which nucleolar stress, but not protein aggregation, is the primary contributor to C9orf72-linked neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available