4.7 Article

OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009-Part 1: Measurements and model comparison

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 13, Issue 11, Pages 5403-5423

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-13-5403-2013

Keywords

-

Funding

  1. National Science Foundation [AGS-0612738, AGS-0904167, AGS 0904134]
  2. Biosphere Atmosphere Research and Training (BART) fellowship
  3. Directorate For Geosciences [0904128] Funding Source: National Science Foundation
  4. Directorate For Geosciences
  5. Div Atmospheric & Geospace Sciences [1104880] Funding Source: National Science Foundation
  6. Div Atmospheric & Geospace Sciences [0904128] Funding Source: National Science Foundation

Ask authors/readers for more resources

Hydroxyl (OH) and hydroperoxyl (HO2) radicals are key species driving the oxidation of volatile organic compounds that can lead to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in forest environments with high isoprene, low NOx conditions have shown serious discrepancies with modeled concentrations, bringing into question the current understanding of isoprene oxidation chemistry in these environments. During the summers of 2008 and 2009, OH and peroxy radical concentrations were measured using a laser-induced fluorescence instrument as part of the PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions, and Transport) and CABINEX (Community Atmosphere-Biosphere INteractions EXperiment) campaigns at a forested site in northern Michigan. Supporting measurements of photolysis rates, volatile organic compounds, NOx (NO + NO2) and other inorganic species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism, modified to include the Mainz Isoprene Mechanism (RACM-MIM). The CABINEX model OH predictions were in good agreement with the measured OH concentrations, with an observed-to-modeled ratio near one (0.70 +/- 0.31) for isoprene mixing ratios between 1-2 ppb on average. The measured peroxy radical concentrations, reflecting the sum of HO2 and isoprene-based peroxy radicals, were generally lower than predicted by the box model in both years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available