4.8 Article

GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits

Journal

NUCLEIC ACIDS RESEARCH
Volume 46, Issue W1, Pages W114-W120

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gky407

Keywords

-

Funding

  1. National Natural Science Foundation of China [31701143]
  2. Talent Excellence Program from Tianjin Medical University
  3. Tianjin Medical University
  4. Thousand Youth Talents Plan of Tianjin
  5. Discipline Development Fund from Tianjin Medical University

Ask authors/readers for more resources

Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet formost of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of noncoding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available