4.8 Article

Stability of local secondary structure determines selectivity of viral RNA chaperones

Journal

NUCLEIC ACIDS RESEARCH
Volume 46, Issue 15, Pages 7924-7937

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gky394

Keywords

-

Funding

  1. Wellcome Trust [103068/Z/13/Z]
  2. Biotechnology and Biological Sciences Research Council (BBSRC) White Rose DTP [BB/M011151/1]
  3. European Regional Development Fund [CZ.02.1.01/0.0/0.0/15_003/0000441]
  4. BBSRC [BB/P000037/1, BB/E012558/1]
  5. Deutsche Forschungsgemeinschaft [SFB1032]
  6. Ludwig-Maximilians-Universitat, Munchen through the Center for NanoScience (CeNS)
  7. FEBS
  8. FEMS
  9. Microbiology Society
  10. BBSRC [1827288] Funding Source: UKRI

Ask authors/readers for more resources

To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus sigma NS. Here, we compared the abilities of NSP2 and sigma NS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while sigma NS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric sigma NS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of inter-segment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available