4.7 Article

Functional connectivity associated with hand shape generation: Imitating novel hand postures and pantomiming tool grips challenge different nodes of a shared neural network

Journal

HUMAN BRAIN MAPPING
Volume 36, Issue 9, Pages 3426-3440

Publisher

WILEY
DOI: 10.1002/hbm.22853

Keywords

hand posture; imitation; pantomime; tool use; fMRI; functional connectivity

Funding

  1. Research Foundation - Flanders (FWO) [G.0555.11]

Ask authors/readers for more resources

Clinical research suggests that imitating meaningless hand postures and pantomiming tool-related hand shapes rely on different neuroanatomical substrates. We investigated the BOLD responses to different tasks of hand posture generation in 14 right handed volunteers. Conjunction and contrast analyses were applied to select regions that were either common or sensitive to imitation and/or pantomime tasks. The selection included bilateral areas of medial and lateral extrastriate cortex, superior and inferior regions of the lateral and medial parietal lobe, primary motor and somatosensory cortex, and left dorsolateral prefrontal, and ventral and dorsal premotor cortices. Functional connectivity analysis revealed that during hand shape generation the BOLD-response of every region correlated significantly with every other area regardless of the hand posture task performed, although some regions were more involved in some hand postures tasks than others. Based on between-task differences in functional connectivity we predict that imitation of novel hand postures would suffer most from left superior parietal disruption and that pantomiming hand postures for tools would be impaired following left frontal damage, whereas both tasks would be sensitive to inferior parietal dysfunction. We also unveiled that posterior temporal cortex is committed to pantomiming tool grips, but that the involvement of this region to the execution of hand postures in general appears limited. We conclude that the generation of hand postures is subserved by a highly interconnected task-general neural network. Depending on task requirements some nodes/connections will be more engaged than others and these task-sensitive findings are in general agreement with recent lesion studies. Hum Brain Mapp 36:3426-3440, 2015. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available