3.8 Article

Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects

Journal

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/hmbci-2013-0013

Keywords

adipose tissue; metabolism; nuclear receptors; retinoic acid; vitamin A

Funding

  1. European Genomic Institute for Diabetes (EGID) [ANR-10-LABX-46]

Ask authors/readers for more resources

Vitamin A, ingested either as retinol or beta-carotene from animal- or plant-derived foods respectively, is a nutrient essential for many biological functions such as embryonic development, vision, immune response, tissue remodeling, and metabolism. Its main active metabolite is all trans-retinoic acid (atRA), which regulates gene expression through the activation of alpha, beta, and gamma isotypes of the nuclear atRA receptor (RAR). More recently, retinol derivatives were also shown to control the RAR activity, enlightening the interplay between vitamin A metabolism and RAR-mediated transcriptional control. The white and brown adipose tissues regulate the energy homeostasis by providing dynamic fatty acid storing and oxidizing capacities to the organism, in connection with the other fatty acid-consuming tissues. This concerted interorgan response to fatty acid fluxes is orchestrated, in part, by the endocrine activity of the adipose tissue depots. The adipose tissues are also sites for synthesizing and storing vitamin A derivatives, which will act as hormonal cues or intracellularly to regulate essential aspects of adipocyte biology. As agents that prevent adipocyte differentiation hence, expected to decrease fat mass, and inducers of uncoupling protein expression, thus, favoring energy expenditure, retinoids have prompted many investigations to decipher their roles in adipose tissue pathophysiology, which are summarized in this review.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available