4.5 Article

Immediate and Medium-term Changes in Cortical and Hippocampal Inhibitory Neuronal Populations after Diffuse TBI

Journal

NEUROSCIENCE
Volume 388, Issue -, Pages 152-170

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2018.07.020

Keywords

diffuse traumatic brain injury; neural injury; interneurons; inhibition; cortex; hippocampus; time course

Categories

Funding

  1. National Health and Medical Research Council of Australia [APP1029311]

Ask authors/readers for more resources

Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. We now investigated the time course of dTBI effects on interneurons in neocortex and hippocampus. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) neuropeptide Y (NPY), and somatostatin (SOM) at 24 h and 2 weeks post dTBI. We found time-dependent, brain area-specific changes in inhibition at 24 h and 2 weeks. At 24 h post-injury, reduction of dendrite-targeting inhibitory neurons occurred in sensory cortex and hippocampus. At 2 weeks, we found compensatory changes in the somatosensory cortex and CA2/3 of hippocampus affected at 24 h, with affected interneuronal populations returning to sham levels. However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24 h returning to normal levels by 2 weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available