4.7 Review

MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies

Journal

NEUROPHARMACOLOGY
Volume 134, Issue -, Pages 259-271

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2017.10.034

Keywords

Dementia; Vascular cognitive impairment; Blood-brain barrier permeability; Dynamic contrast enhanced MRI

Funding

  1. NIH [RO1 NS 052305]
  2. US-Israeli Binational Research Foundation
  3. National Center for Advancing Translational Sciences of the NIH [8UL1TR000041]

Ask authors/readers for more resources

Blood-brain barrier (BBB) separates the systemic circulation and the brain, regulating transport of most molecules to protect the brain microenvironment. Multiple structural and functional components preserve the integrity of the BBB. Several imaging modalities are available to study disruption of the BBB. However, the subtle changes in BBB leakage that occurs in vascular cognitive impairment and Alzheimer's disease have been less well studied. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is the most widely adopted non-invasive imaging technique for evaluating BBB breakdown. It is used as a significant marker for a wide variety of diseases with large permeability leaks, such as brain tumors and multiple sclerosis, to more subtle disruption in chronic vascular disease and dementia. DCE-MRI analysis of BBB includes both model-free parameters and quantitative parameters using pharmacokinetic modelling. We review MRI studies of BBB breakdown in dementia. The challenges in measuring subtle BBB changes and the state of the art techniques are initially examined. Subsequently, a systematic review comparing methodologies from recent in-vivo MRI studies is presented. Various factors related to subtle BBB permeability measurement such as DCE-MRI acquisition parameters, arterial input assessment, T-1 mapping and data analysis methods are reviewed with the focus on finding the optimal technique. Finally, the reported BBB permeability values in dementia are compared across different studies and across various brain regions. We conclude that reliable measurement of low-level BBB permeability across sites remains a difficult problem and a standardization of the methodology for both data acquisition and quantitative analysis is required. This article is part of the Special Issue entitled 'Cerebral lschemia'. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available