4.7 Article

Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias

Journal

NEUROIMAGE
Volume 166, Issue -, Pages 10-18

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2017.10.065

Keywords

Focal cortical dysplasia; FCD detection; MRI; FDG-PET; Surface-based feature modeling; Patch analysis

Funding

  1. NIBIB NIH HHS [P41 EB015922] Funding Source: Medline
  2. NICHD NIH HHS [R01 HD072074] Funding Source: Medline

Ask authors/readers for more resources

Objective: Focal cortical dysplasias (FCDs) often cause pharmacoresistant epilepsy, and surgical resection can lead to seizure-freedom. Magnetic resonance imaging (MRI) and positron emission tomography (PET) play complementary roles in FCD identification/localization; nevertheless, many FCDs are small or subtle, and difficult to find on routine radiological inspection. We aimed to automatically detect subtle or visually-unidentifiable FCDs by building a classifier based on an optimized cortical surface sampling of combined MRI and PET features. Methods: Cortical surfaces of 28 patients with histopathologically-proven FCDs were extracted. Morphology and intensity-based features characterizing FCD lesions were calculated vertex-wise on each cortical surface, and fed to a 2-step (Support Vector Machine and patch-based) classifier. Classifier performance was assessed compared to manual lesion labels. Results: Our classifier using combined feature selections from MRI and PET outperformed both quantitative MRI and multimodal visual analysis in FCD detection (93% vs 82% vs 68%). No false positives were identified in the controls, whereas 3.4% of the vertices outside FCD lesions were also classified to be lesional (extralesional clusters). Patients with type I or IIa FCDs displayed a higher prevalence of extralesional clusters at an intermediate distance to the FCD lesions compared to type IIb FCDs (p < 0.05). The former had a correspondingly lower chance of positive surgical outcome (71% vs 91%). Conclusions: Machine learning with multimodal feature sampling can improve FCD detection. The spread of extralesional clusters characterize different FCD subtypes, and may represent structurally or functionally abnormal tissue on a microscopic scale, with implications for surgical outcomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available