4.6 Article

Mixed kernel based extreme learning machine for electric load forecasting

Journal

NEUROCOMPUTING
Volume 312, Issue -, Pages 90-106

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2018.05.068

Keywords

Electric load forecasting; Extreme learning machine; RBF kernel; UKF kernel; Empirical mode decomposition

Funding

  1. Natural Science Foundation of PR China [61073193, 61300230]
  2. Key Science and Technology Foundation of Gansu Province [1102FKDA010]
  3. Natural Science Foundation of Gansu Province [1107RJZA188]
  4. Science and Technology Support Program of Gansu Province [1104GKCA037]

Ask authors/readers for more resources

Short term electric load forecasting, as an important tool in the electricity market, plays a critical role in the management of electric systems. Proposing an accuracy and optimization method is not only a challenging task but also an indispensable part of the energy system. More and more accurate forecasting methods are needed by different people in different areas. This paper proposes a novel short-term electric load forecasting method EMD-Mixed-ELM which based on empirical mode decomposition (EMD) and extreme learning machine (ELM). EMD-Mixed-ELM first uses the empirical mode decomposition to decompose the load series for capturing the complicated features of the electric load and de-noising the data. Considering that the performance of extreme learning machine (ELM) is greatly influenced by the choice of kernel, the mixed kernel method is proposed for ELM. The mixed kernel combines the RBF kernel and the UKF kernel. The forecasting results of the EMD-Mixed-ELM are proved to be better than all the other three methods (RBF-ELM, UKF-ELM and Mixed-ELM) and other existing methods (MFES, ESPLSSVM and Combined method). To verify the forecasting ability of the EMD-Mixed-ELM, half-hourly electric load data from the state of New South Wales, Victoria and Queensland in Australia are used in this paper as a case study. The experimental results clearly indicate that for this three datasets, the forecasting accuracy of the proposed method is superior to other methods. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available