4.6 Article

Android malware detection with unbiased confidence guarantees

Journal

NEUROCOMPUTING
Volume 280, Issue -, Pages 3-12

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2017.08.072

Keywords

Malware detection; Android; Security; Conformal Prediction; Class imbalance; Unbiased predictions; Confidence measures; Confidence guarantees; Random forests

Ask authors/readers for more resources

The impressive growth of smartphone devices in combination with the rising ubiquity of using mobile platforms for sensitive applications such as Internet banking, have triggered a rapid increase in mobile malware. In recent literature, many studies examine Machine Learning techniques, as the most promising approach for mobile malware detection, without however quantifying the uncertainty involved in their detections. In this paper, we address this problem by proposing a machine learning dynamic analysis approach that provides provably valid confidence guarantees in each malware detection. Moreover the particular guarantees hold for both the malicious and benign classes independently and are unaffected by any bias in the data. The proposed approach is based on a novel machine learning framework, called Conformal Prediction, combined with a random forests classifier. We examine its performance on a large-scale dataset collected by installing 1866 malicious and 4816 benign applications on a real android device. We make this collection of dynamic analysis data available to the research community. The obtained experimental results demonstrate the empirical validity, usefulness and unbiased nature of the outputs produced by the proposed approach. (c) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available