4.6 Article

Leader-following exponential consensus of input saturated stochastic multi-agent systems with Markov jump parameters

Journal

NEUROCOMPUTING
Volume 287, Issue -, Pages 84-92

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2018.01.075

Keywords

Leader-following consensus; Multi-agent systems; Input saturation; Markov jump parameters

Ask authors/readers for more resources

This paper is concerned with the solvability of leader-following exponential consensus of a stochastic nonlinear multi-agent system in the presence of Markov jump parameters and input saturation by using a fault-tolerant control scheme. Firstly, the interconnection topology that represents the communication between the leader and follower agents is chosen to be undirected and fixed. Secondly, to exhibit real scenario, a time-varying actuator fault model is incorporated in the fault-tolerant control design. Thirdly, by introducing a simple linear transformation, an error system is then formulated. Based on these setups and by employing the tools from algebraic graph theory and Lyapunov-Krasovskii stability theory, a distributed robust fault-tolerant controller is designed for each follower node in terms of linear matrix inequalities such that the closed-loop error system is exponentially stable in the sense of mean-square even in the presence of possible actuator faults. Lastly, a simulation study is presented to illustrate the efficacy of the proposed control design technique. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available