4.5 Review

Structural insights into the design of novel anti-influenza therapies

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 25, Issue 2, Pages 115-121

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41594-018-0025-9

Keywords

-

Funding

  1. NIH [R56 AI127371]
  2. Croucher Foundation Fellowship

Ask authors/readers for more resources

A limited arsenal of therapies is currently available to tackle the emergence of a future influenza pandemic or even to deal effectively with the continual outbreaks of seasonal influenza. However, recent findings hold great promise for the design of novel vaccines and therapeutics, including the possibility of more universal treatments. Structural biology has been a major contributor to those advances, in particular through the many studies on influenza hemagglutinin (HA), the major surface antigen. HA's primary function is to enable the virus to enter host cells, and structural work has revealed the various HA conformational forms generated during the entry process. Other studies have explored how human broadly neutralizing antibodies (bnAbs), designed proteins, peptides and small molecules, can inhibit and neutralize the virus. Here we review milestones in HA structural biology and how the recent insights from bnAbs are paving the way to design novel vaccines and therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available