4.5 Article

Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 25, Issue 6, Pages 505-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41594-018-0069-x

Keywords

-

Funding

  1. NIH [RO1GM033289, RO1HL117138, T32GM007276, TL1RR025742, F32HL124883]
  2. Stanford Bio-X fellowship
  3. Stanford School of Medicine Deans Postdoctoral Fellowship

Ask authors/readers for more resources

Concepts in molecular tension sensing in biology are growing and have their origins in studies of muscle contraction. In the heart muscle, a key parameter of contractility is the detachment rate of myosin from actin, which determines the time that myosin is bound to actin in a force-producing state and, importantly, depends on the load (force) against which myosin works. Here we measure the detachment rate of single molecules of human beta-cardiac myosin and its load dependence. We find that both can be modulated by both small-molecule compounds and cardiomyopathy-causing mutations. Furthermore, effects of mutations can be reversed by introducing appropriate compounds. Our results suggest that activating versus inhibitory perturbations of cardiac myosin are discriminated by the aggregate result on duty ratio, average force, and ultimately average power output and suggest that cardiac contractility can be controlled by tuning the load-dependent kinetics of single myosin molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available