4.8 Article

Functional assignment of multiple catabolic pathways for D-apiose

Journal

NATURE CHEMICAL BIOLOGY
Volume 14, Issue 7, Pages 696-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41589-018-0067-7

Keywords

-

Funding

  1. National Institutes of Health [U54GM093342, P01GM118303]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [P01GM118303] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible (http://efi.igb.illinois.edu/efi-est/),so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available