4.6 Article

High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcriptomics in Enchytraeus crypticus

Journal

NANOTOXICOLOGY
Volume 12, Issue 4, Pages 325-340

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2018.1446559

Keywords

Nanomaterials; high-throughput; toxicogenomics; mechanisms of response; adverse outcome pathway

Ask authors/readers for more resources

The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4x44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC20, EC50), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available