4.8 Article

Self-organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high-performance electron emission devices

Journal

NANOSCALE
Volume 10, Issue 3, Pages 1345-1355

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr06774g

Keywords

-

Funding

  1. Research Foundation Flanders (FWO) [12I8416N, 1519817N]
  2. Methusalem NANO network
  3. Polish National Science Centre (NCN) [2014/14/M/ST5/00715, 2016/21/B/ST7/01430]
  4. Institute for Basic Science [IBS-R004-A2-2017-a00]
  5. Faculty of Electronics, Telecommunications and Informatics of the Gdansk University of Technology

Ask authors/readers for more resources

Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior. Herein, a hybrid structure of self-organized multi-layered graphene (MLG)-boron doped diamond (BDD) nanowall materials with superior FEE characteristics was successfully synthesized using a microwave plasma enhanced chemical vapor deposition process. Transmission electron microscopy reveals that the as-prepared carbon clusters have a uniform, dense, and sharp nanowall morphology with sp(3) diamond cores encased by an sp(2) MLG shell. Detailed nanoscale investigations conducted using peak force-controlled tunneling atomic force microscopy show that each of the core-shell structured carbon cluster fields emits electrons equally well. The MLG-BDD nanowall materials show a low turn-on field of 2.4 V mu m(-1), a high emission current density of 4.2 mA cm(-2) at an applied field of 4.0 V mu m(-1), a large field enhancement factor of 4500, and prominently high lifetime stability (lasting for 700 min), which demonstrate the superiority of these materials over other hybrid nanostructured materials. The potential of these MLG-BDD hybrid nanowall materials in practical device applications was further illustrated by the plasma illumination behavior of a microplasma device with these materials as the cathode, where a low threshold voltage of 330 V (low threshold field of 330 V mm(-1)) and long plasma stability of 358 min were demonstrated. The fabrication of these hybrid nanowalls is straight forward and thereby opens up a pathway for the advancement of next-generation cathode materials for high brightness electron emission and micro-plasma-based display devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available