4.8 Article

Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation

Journal

NANO RESEARCH
Volume 11, Issue 6, Pages 3442-3452

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-018-1993-0

Keywords

palladium; nanoplates; two-dimensional materials; complexation; nucleation; growth

Funding

  1. NSF [CHE1213926]
  2. UIUC

Ask authors/readers for more resources

Unlike nucleation and growth in simple precipitation processes, described by the classical theory, metal nanoparticles formed in organic solvents with capping ligands often involve chemical reactions that occur homogeneously in solution or heterogeneously on the metal surface. These chemical reactions lead to the formation of intermediates that occurs in the process of deposition onto nuclei during the reduction. The understanding of these chemical reactions would enable a better design of functional metal nanocrystals, even those with unconventional hierarchical morphologies. In this study, we report the formation of dish-shaped nanostructures of palladium (Pd) obtained from palladium acetylacetonate (Pd(acac)(2)) in the presence of oleylamine and oleic acid. The process was correlated with the kinetic-controlled evolution of two-dimensional (2D) Pd nanosheets. The formation of Pd-ligand complexes was revealed using single-crystal X-ray diffraction, ultraviolet-visible spectroscopy, and mass spectrometry. These intermediates affected the formation kinetics of the 2D nanostructures and higher-ordered morphology of the nanodishes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available