4.8 Article

Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications

Journal

NANO RESEARCH
Volume 11, Issue 8, Pages 4199-4214

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-018-2008-x

Keywords

nanostructured composite; extreme biomimetics; spongin scaffold; manganese oxide; electrochemistry; supercapacitor

Funding

  1. Poznan University of Technology (Poland) [03/32/DSPB/0706/2017]
  2. Ministry of Science and Higher Education [03/31/DSBP/0337]
  3. German Research Foundation (DFG) [HE 394-3]
  4. BHMZ Erich-Krueger-Foundation
  5. Foundation for Polish Science [(FNP)-START 097.2017]

Ask authors/readers for more resources

Composites containing biological materials with nanostructured architecture have become of great interest in modern materials science, yielding both interesting chemical properties and inspiration for biomimetic research. Herein, we describe the preparation of a novel 3D nanostructured MnO2-based composite developed using a carbonized proteinaceous spongin template by an extreme biomimetics approach. The thermal stability of the spongin-based scaffold facilitated the formation of both carbonized material (at 650 degrees C with exclusion of oxygen) and manganese oxide with a defined nanoscale structure under 150 degrees C. Remarkably, the unique network of spongin fibers was maintained after pyrolysis and hydrothermal processing, yielding a novel porous support. The MnO2-spongin composite shows a bimodal pore distribution, with macropores originating from the spongin network and mesopores from the nanostructured oxidic coating. Interestingly, the composites also showed improved electrochemical properties compared to those of MnO2. Voltammetry cycling demonstrated the good stability of the material over more than 3,000 charging/discharging cycles. Additionally, electrochemical impedance spectroscopy revealed lower charge transfer resistance in the prepared materials. We demonstrate the potential of extreme biomimetics for developing a new generation of nanostructured materials with 3D centimeter-scale architecture for the storage and conversion of energy generated from renewable natural sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available