4.8 Article

Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe2 Single Crystals and Their Thickness-Dependent Electronic Properties

Journal

NANO LETTERS
Volume 18, Issue 6, Pages 3523-3529

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b00583

Keywords

Chemical vapor deposition; PtTe2 nanosheets; 2D materials; electrical conductivity; breakdown current density

Funding

  1. National Natural Science Foundation of China [61528403]
  2. Fundamental Research Funds of the Central Universities [531107051078, 531107051055]

Ask authors/readers for more resources

The recent discovery of topological semimetals has stimulated extensive research interest due to their unique electronic properties and novel transport properties related to a chiral anomaly. However, the studies to date are largely limited to bulk crystals and exfoliated flakes. Here, we report the controllable synthesis of ultrathin two-dimensional (2D) platinum telluride (PtTe2) nanosheets with tunable thickness and investigate the thickness-dependent electronic properties. We show that PtTe2 nanosheets can be readily grown, using a chemical vapor deposition approach, with a hexagonal or triangular geometry and a lateral dimension of up to 80 mu m, and the thickness of the nanosheets can be systematically tailored from over 20 to 1.8 nm by reducing the growth temperature or increasing the flow rate of the carrier gas. X-ray-diffraction, transmission-electron microscopy, and electron-diffraction studies confirm that the resulting 2D nanosheets are high-quality single crystals. Raman spectroscopic studies show characteristics E-g and A(1g) vibration modes at , similar to 109 and similar to 155 cm(-1) , with a systematic red shift with increasing nanosheet thickness. Electrical transport studies show the 2D PtTe2 nanosheets display an excellent conductivity up to 2.5 X 10(6) S m(-1) and show strong thickness-tunable electrical properties, with both the conductivity and its temperature dependence varying considerably with the thickness. Moreover, 2D PtTe2 nanosheets show an extraordinary breakdown current density up to 5.7 x 10(7) A/cm(2) , the highest breakdown current density achieved in 2D metallic transition-metal dichalcogenides to date.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available