4.7 Article

Unstable low-mass planetary systems as drivers of white dwarf pollution

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 476, Issue 3, Pages 3939-3955

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty446

Keywords

Kuiper Belt: general; planets and satellites: dynamical evolution and stability; stars: AGB and post-AGB; circumstellar matter; planetary systems; white dwarfs

Funding

  1. Knut & Alice Wallenberg Foundation [2014.0017]
  2. Walter Gyllenbergs fund of the Royal Physiographic Society in Lund
  3. Spanish Ministry of Economy and Competitiveness (MINECO) [AYA-2014-55840P]
  4. European Research Council under the European Union [320964]
  5. Science and Technology Facilities Council via an Ernest Rutherford Fellowship [ST/P003850/1]
  6. Royal Society by a Dorothy Hodgkin Fellowship
  7. STFC [ST/P003850/1, ST/P000495/1] Funding Source: UKRI

Ask authors/readers for more resources

At least 25 per cent of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available