4.7 Article

Planet-disc interactions with discontinuous Galerkin methods using GPUs

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 478, Issue 2, Pages 1855-1865

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty1192

Keywords

hydrodynamics; methods: numerical; planet-disc interactions; protoplanetary discs

Ask authors/readers for more resources

We present a two-dimensional Cartesian code based on high-order discontinuous Galerkin methods, implemented to run in parallel over multiple graphics processing units. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10(-8)r(2)Omega, r and Omega being respectively the local orbital radius and frequency, for fifth-order schemes and resolution of similar to 10(-2)r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth-order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available