4.7 Article

Discovery of a 23.8 h QPO in the Swift light curve of XMMU J134736.6+173403

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 477, Issue 3, Pages 3178-3184

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty841

Keywords

accretion, accretion discs; black hole physics; methods: data analysis; techniques: photometric; galaxies: Seyfert; X-rays: galaxies

Funding

  1. ESA Member States
  2. NASA

Ask authors/readers for more resources

XMMU J134736.6+173403 is an X-ray source discovered serendipitously by XMM-Newton, which was found to be spatially coincident with a pair of galaxies, including a Seyfert 2 galaxy, but presented in 2003 a very sharp persistent flux drop of a factor of 6.5 within 1 h. From the analysis of a set of 29 Swift observations conducted from 2008 February 6 to 2008 May 23, we discovered twin-peak quasi-periodic oscillations (QPOs) with periods of 23.82 +/- 0.07 h and 71.44 +/- 0.57 h. Using a Chandra observation of 2008, we evaluate more accurately the position of the X-ray source and show that the new source coordinates coincide with the position of the Seyfert 2 galaxy. We provide a detailed spectral energy distribution (SED) of the active galactic nucleus (AGN) counterpart using multiwavelength observations. The AGN is radio-loud and the broad-band SED modelling indicates a black hole with a mass of 9.8 x 10(6)M(circle dot), which accretes at an Eddington ratio of 0.047. QPOs for active galaxies have been reported so far in only few cases, the most reliable one being from RE J1034+396 for which a 1 h periodicity has been discovered analysing a 91 ks XMM-Newton observation. Twin-peak QPOs with an observed frequency ratio of 3:1 have not been reported so far for any AGN. From resonance models of the epicyclic frequencies, we evaluate the different possible mass-spin relations. It's still not clear what could have been the origin of the high flux and sharp drop only observed in 2003.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available