4.7 Article

Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 477, Issue 2, Pages 1651-1669

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty466

Keywords

galaxies: distances and redshifts; cosmology: observations

Funding

  1. NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF5-160138]
  2. NASA [NAS8-03060]
  3. DOE [DE-SC0015975]
  4. Sloan Foundation [FG-2016-6443]
  5. US Department of Energy
  6. US National Science Foundation
  7. Ministry of Science and Education of Spain
  8. Science and Technology Facilities Council of the United Kingdom
  9. Higher Education Funding Council for England
  10. National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign
  11. Kavli Institute of Cosmological Physics at the University of Chicago
  12. Center for Cosmology and Astro-Particle Physics at the Ohio State University
  13. Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University
  14. Financiadora de Estudos e Projetos
  15. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro
  16. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
  17. Ministerio da Ciencia, Tecnologia e Inovacao
  18. Deutsche Forschungsgemeinschaft
  19. Argonne National Laboratory
  20. University of California at Santa Cruz
  21. University of Cambridge
  22. Centro de Investigaciones Energeticas
  23. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid
  24. University of Chicago
  25. University College London
  26. DES-Brazil Consortium
  27. University of Edinburgh
  28. Eidgenossische Technische Hochschule (ETH) Zurich
  29. Fermi National Accelerator Laboratory
  30. University of Illinois at Urbana-Champaign
  31. Institut de Ciencies de l'Espai (IEEC/CSIC)
  32. Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory
  33. Ludwig-Maximilians Universitat Munchen
  34. associated Excellence Cluster Universe, the University of Michigan
  35. National Optical Astronomy Observatory
  36. University of Nottingham
  37. Ohio State University
  38. University of Pennsylvania
  39. University of Portsmouth
  40. SLAC National Accelerator Laboratory
  41. Stanford University
  42. University of Sussex
  43. Texas AM University
  44. OzDES Membership Consortium
  45. National Science Foundation [AST-1138766, AST-1536171]
  46. MINECO [AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, MDM-2015-0509]
  47. European Union
  48. CERCA program of the Generalitat de Catalunya
  49. European Research Council under European Union, ERC [240672, 291329, 306478]
  50. Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]
  51. US Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-07CH11359]
  52. Office of Science of the US Department of Energy [DE-AC02-05CH11231]
  53. Australian Government through Australian Research Council [DP160100930]
  54. STFC [ST/L005573/1, ST/M007030/1, ST/N000668/1, ST/M002853/1, ST/K00090X/1, ST/F002335/1, ST/I001204/1, ST/J005428/1, ST/M004708/1, ST/K006797/1] Funding Source: UKRI
  55. Science and Technology Facilities Council [ST/I001204/1, 1244451, ST/F002335/1, ST/M002853/1, ST/K00090X/1, ST/M007030/1, ST/J005428/1, ST/M004708/1, ST/L005573/1, ST/K006797/1] Funding Source: researchfish
  56. Direct For Mathematical & Physical Scien
  57. Division Of Astronomical Sciences [1311924] Funding Source: National Science Foundation
  58. Division Of Physics
  59. Direct For Mathematical & Physical Scien [1125897] Funding Source: National Science Foundation

Ask authors/readers for more resources

We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Delta z less than or similar to 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available