4.6 Article

Comprehensive Metabolomics Analysis of Xueshuan Xinmaining Tablet in Blood Stasis Model Rats Using UPLC-Q/TOF-MS

Journal

MOLECULES
Volume 23, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/molecules23071650

Keywords

blood stasis syndrome; Xueshuan Xinmaining tablet; UPLC-Q/TOF-MS; rats; metabolomics

Funding

  1. Biomedicine Special Foundation for Government-University Cooperation Project of Jilin Province [SXGJSF2017-1-1-(02)]

Ask authors/readers for more resources

Blood stasis syndrome (BSS) is one of the most common Chinese medicine patterns in coronary heart disease. Our previous work proved that Xueshuan Xinmaining Tablet (XXT) could treat blood stasis through regulating the expression of F13a1, Car1 and Tbxa2r. In the current study, the effect and mechanism of XXT on BSS was comprehensively and holistically investigated based on a metabolomics approach. Urine and plasma samples of 10 BBS rats treated with XXT (XT), 9 BSS model rats (BM) and 11 normal control (NC) rats were collected and then determined by UPLC-Q/TOP-MS. Multivariate analyses were applied to distinguish differentiate urinary and plasma metabolite patterns between three groups. Results showed that a clear separation of three groups was achieved. XT group was located between BM group and NC group, and showing a tendency of recovering to NC group, which was consistent with the results of hemorheological studies. Some significantly changed metabolites like cortexolone, 3 alpha,21-dihydroxy-5 beta-pregnane-11,20-dione and 19S-hete and leukotriene A4, chiefly involved in steroid hormone biosynthesis, arachidonic acid metabolism and lipid metabolism, were found and identified to explain the mechanism. These potential markers and their corresponding pathways will help explain the mechanism of BSS and XXT treatment. This work also proves that metabolomics is effective in traditional Chinese medicinal research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available