4.6 Article

Simultaneous Screening of Major Flame Retardants and Plasticizers in Polymer Materials Using Pyrolyzer/Thermal Desorption Gas Chromatography Mass Spectrometry (Py/TD-GC-MS)

Journal

MOLECULES
Volume 23, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/molecules23040728

Keywords

additives; short chain chlorinated paraffins; decabromodiphenyl ether; hexabromocyclododecane; di(2-ethylhexyl) phthalate; pyrolysis; thermal desorption; plasticizer; HBCDD; DEHP

Ask authors/readers for more resources

This study was conducted with the aim of achieving the simultaneous screening of various additives in polymer materials by utilizing a solvent-free pyrolyzer/thermal desorption gas chromatography mass spectrometry (Py/TD-GC-MS) method. As a first step to achieve this goal, simultaneous screening has been examined by selecting major substances representing plasticizers and flame retardants, such as short chain chlorinated paraffins (SCCPs), decabromodiphenyl ether (DecaBDE), hexabromocyclododecane (HBCDD), and di(2-ethylhexyl) phthalate (DEHP). A quantitative MS analysis was performed to check for the peak areas and sensitivities. Since Py/TD-GC-MS is fraught with the risk of thermal degradation of the sample, temperatures during the analytical process were finely tuned for securing reliable results. The instrumental sensitivity was confirmed by the S/N ratio on each component. The detection limits of all components were less than 50 mg/kg, which are sufficiently lower than the regulatory criteria. With regard to reproducibility, a relative standard deviation (RSD) of about 5% was confirmed by employing a spike recovery test on a polystyrene polymer solution containing mixed standard solution (ca. 1000 mg/kg). In conclusion, the results obtained in this study indicate that Py/TD-GC-MS is applicable for the screening of major flame retardants and plasticizers in real samples with sufficient reproducibility at regulatory levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available